

1

Output Formatting

Formatting program output is an essential part of any serious application.

Surprisingly, most C++ textbooks don't give a full treatment of output formatting. The

purpose of this section is to describe the full range of formatting abilities available in

C++.

Formatting in the standard C++ libraries is done through the use of manipulators,

special variables or objects that are placed on the output stream. Most of the standard

manipulators are found in <iostream> and so are included automatically. The standard

C++ manipulators are not keywords in the language, just like cin and cout, but it is

often convenient to think of them as a permanent part of the language.

The standard C++ output manipulators are:

endl
- places a new line character on the output stream. This is identical to

placing '\n' on the output stream.
#include<iostream>

using namespace std;

int main()

{

 cout << "Hello world 1" << endl;

 cout << "Hello world 2\n";

 return 0;

}

produces
Hello world 1

Hello world 2

flush
- flushes the output buffer to its final destination.

Some explanation is in order here. For efficiency reasons, most output is not

sent directly to the output device at the time a program uses a cout statement.

Rather it is collected in an output buffer in the system memory. Periodically,

the collected contents of the buffer are flushed to the output device in one large

block. This is much faster than sending the output one character at a time. This

flushing happens automatically when the buffer contents get too large.

The output buffer is also flushed before an input statement is executed. This is

because the output may be a prompt, and a prompt should appear on the screen

in full before any input is accepted.

2

The output buffer is also flushed when the stream is closed at the end of the

program.

In short, the output buffer and its flushing mechanism is largely transparent to

the user. The flush manipulator is rarely needed.

One exception to this is in using printing statements for debugging. When a

program crashes, the output buffer may or may not make it to the output device

when the program terminates. Consequently, if print statements are used to

locate where the crash occurs, misleading results may be obtained. Using

the flush operator after every output will help prevent this problem (but is not

guaranteed to work every time).

A better solution to this problem is to use the output stream cerr for error

output. This stream is also defined in <iostream> and is an output stream of

type ostream. It works just like cout except that all output is automatically

flushed.

Field width
A very useful thing to do in a program is output numbers and strings in fields of

fixed width. This is crucial for reports.
setw()

- Adjusts the field with for the item about to be printed.

Important Point

The setw() manipulator only affects the next value to be printed.

The setw() manipulator takes an integer argument which is the minimum field

width for the value to be printed.

Important Point

All manipulators that take arguments are defined in the header file iomanip.

This header file must be included to use such manipulators.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 // A test of setw()

 cout << "*" << -17 << "*" << endl;

3

 cout << "*" << setw(6) << -17 << "*" << endl << endl;

 cout << "*" << "Hi there!" << "*" << endl;

 cout << "*" << setw(20) << "Hi there!" << "*" << endl;

 cout << "*" << setw(3) << "Hi there!" << "*" << endl;

 return 0;

}

produces
-17

* -17*

Hi there!

* Hi there!*

Hi there!

Note that the values are right justified in their fields. This can be changed. Note

also what happens if the value is too big to fit in the field.

Important Point

The argument given to setw() is a minimum width. If the value needs more

space, the output routines will use as much as is needed.

This field overflow strategy is different than that used in other programming

languages. Some languages will fill a small field with *'s or #'s. Others will

truncate the value. The philosophy for the C++ standard output is that it's better

to have a correct value formatted poorly than to have a nicely formatted error.

Important Point

The default field width is 0.

Justification
Values can be justified in their fields. There are three manipulators for

adjusting the justification: left, right, and internal.

Important Point

The default justification is right justification.

4

Important Point

All manipulators except setw() are persistent. Their effect continues until

explicitly changed.

left
- left justify all values in their fields.

right
- right justify all values in their fields. This is the default justification value.
#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

 cout << "*" << -17 << "*" << endl;

 cout << "*" << setw(6) << -17 << "*" << endl;

 cout << left;

 cout << "*" << setw(6) << -17 << "*" << endl << endl;

 cout << "*" << "Hi there!" << "*" << endl;

 cout << "*" << setw(20) << "Hi there!" << "*" << endl;

 cout << right;

 cout << "*" << setw(20) << "Hi there!" << "*" << endl;

 return 0;

}

produces
-17

* -17*

*-17 *

Hi there!

*Hi there! *

* Hi there!*

showpos and noshowpos
This manipulator determines how positive numbers are printed. A negative

number is traditionally printed with a minus sign in front. The lack of a minus

sign means a positive value. However some accounting and scientific

applications traditionally place a plus sign in front of positive numbers just to

emphasize the fact that the number is positive. Using the showpos manipulator

makes this happen automatically. The noshowpos manipulator returns the output

state to placing nothing in front of positive values.

5

#include <iostream>

using namespace std;

int main()

{

 int pos_int = 4, neg_int = -2, zero_int = 0;

 float pos_f = 3.5, neg_f = -31.2, zero_f = 0.0;

 cout << "pos_int: " << pos_int << " neg_int: " << neg_int;

 cout << " zero_int: " << zero_int << endl;

 cout << "pos_f: " << pos_f << " neg_f: " << neg_f;

 cout << " zero_f: " << zero_f << endl << endl;

 cout << showpos;

 cout << "pos_int: " << pos_int << " neg_int: " << neg_int;

 cout << " zero_int: " << zero_int << endl;

 cout << "pos_f: " << pos_f << " neg_f: " << neg_f;

 cout << " zero_f: " << zero_f << endl << endl;

 return 0;

}

produces
pos_int: 4 neg_int: -2 zero_int: 0

pos_f: 3.5 neg_f: -31.2 zero_f: 0

pos_int: +4 neg_int: -2 zero_int: +0

pos_f: +3.5 neg_f: -31.2 zero_f: +0

Note that zero is considered to be a positive number in this case.

Integer base

Computer science applications occasionally use number systems other than

base 10. The most frequently used number systems (after decimal) are octal

(base 8) and hexadecimal (base 16). Octal number systems use the digits 0

through 7. Hexadecimal systems use the digits 0 through 9 and add the digits A

through F to represent in one digit the values ten through fifteen.

The manipulators dec, oct, and hex change the base that is used to print out

integer values.

Important Point

The base used for output formatting is completely independent from how a

value is stored in machine memory. During output, the bit patterns in

memory are converted to character sequences that are meaningful to human

beings.

6

#include <iostream>

using namespace std;

int main()

{

 // These sequences of characters are treated as decimal numbers by

 // the compiler and converted to the machine internal format.

 long int pos_value = 12345678;

 long int neg_value = -87654321;

 float value = 2.71828;

 cout << "The decimal value 12345678 is printed out as" << endl;

 cout << "decimal: " << pos_value << endl;

 cout << "octal: " << oct << pos_value << endl;

 cout << "hexadecimal: " << hex << pos_value << endl << endl;

 cout << "The decimal value -87654321 is printed out as" << endl;

 cout << "decimal: " << dec << neg_value << endl;

 cout << "octal: " << oct << neg_value << endl;

 cout << "hexadecimal: " << hex << neg_value << endl << endl;

 cout << "The decimal value 2.71828 is printed out as" << endl;

 cout << "decimal: " << dec << value << endl;

 cout << "octal: " << oct << value << endl;

 cout << "hexadecimal: " << hex << value << endl << endl;

 return 0;

}

produces
The decimal value 12345678 is printed out as

decimal: 12345678

octal: 57060516

hexadecimal: bc614e

The decimal value -87654321 is printed out as

decimal: -87654321

octal: 37261500117

hexadecimal: fac6804f

The decimal value 2.71828 is printed out as

decimal: 2.71828

octal: 2.71828

hexadecimal: 2.71828

Note that negative integers are not printed as such in octal or hexadecimal.

Rather, the internal bit patterns are interpreted as always being positive values.

Also note that floating point values are always printed out in decimal format.

7

Floating Point Output

There are 3 floating point formats: general, fixed, and scientific. Fixed format

always has a number, decimal point, and fraction part, no matter how big the

number gets, i.e., not scientific notation. 6.02e+17 would be displayed

as 602000000000000000 instead of 6.02e+17.

Scientific format always displays a number in scientific notation. The value of

one-fourth would not be displayed as 0.25, but as 2.5e-01 instead.

General format is a mix of fixed and scientific formats. If the number is small

enough, fixed format is used. If the number gets too large, the output switches

over to scientific format. General format is the default format for floating point

values.

fixed and scientific

The manipulator fixed will set up the output stream for displaying floating

point values in fixed format.

The scientific manipulator forces all floating point values to be displayed in

scientific notation.

Unfortunately, there is no manipulator to place the output stream back into

general format. The author of these notes considers this to be a design flaw in

the standard C++ libraries. There is a way to place the output stream back into

general format, but it's not pretty and requires more explanation than is

appropriate here. In short, here's the magic incantation

cout.unsetf(ios::fixed | ios::scientific);

In order to use this statement, you need a using declaration for the ios class.
#include <iostream>

using namespace std;

int main()

{

 float small = 3.1415926535897932384626;

 float large = 6.0234567e17;

 float whole = 2.000000000;

 cout << "Some values in general format" << endl;

 cout << "small: " << small << endl;

 cout << "large: " << large << endl;

 cout << "whole: " << whole << endl << endl;

 cout << scientific;

8

 cout << "The values in scientific format" << endl;

 cout << "small: " << small << endl;

 cout << "large: " << large << endl;

 cout << "whole: " << whole << endl << endl;

 cout << fixed;

 cout << "The same values in fixed format" << endl;

 cout << "small: " << small << endl;

 cout << "large: " << large << endl;

 cout << "whole: " << whole << endl << endl;

 // Doesn't work -- doesn't exist

 // cout << general;

 cout.unsetf(ios::fixed | ios::scientific);

 cout << "Back to general format" << endl;

 cout << "small: " << small << endl;

 cout << "large: " << large << endl;

 cout << "whole: " << whole << endl << endl;

 return 0;

}

produces
Some values in general format

small: 3.14159

large: 6.02346e+17

whole: 2

The values in scientific format

small: 3.141593e+00

large: 6.023457e+17

whole: 2.000000e+00

The same values in fixed format

small: 3.141593

large: 602345661202956288.000000

whole: 2.000000

Back to general format

small: 3.14159

large: 6.02346e+17

whole: 2

setprecision()
An important point about floating point output is the precision, which is

roughly the number of digits displayed for the number. The exact definition of

the precision depends on which output format is currently being used.

In general format, the precision is the maximum number of digits displayed.

This includes digits before and after the decimal point, but does not include the

decimal point itself. Digits in a scientific exponent are not included.

9

In fixed and scientific formats, the precision is the number of digits after the

decimal point.

Important Point

The default output precision is 6.

The setprecision manipulator allows you to set the precision used for printing

out floating point values. The manipulator takes an integer argument. The

header file <iomanip> must be included to use this manipulator.

showpoint and noshowpoint
There is one aspect of printing numbers in general format that is either very

nice or very annoying depending on your point of view. When printing out

floating point values, only as many decimal places as needed (up to the

precision) are used to print out the values. In other words, trailing zeros are not

printed. This is nice and compact, but impossible to get decimal points to line

up in tables.

The showpoint manipulator forces trailing zeros to be printed, even though they

are not needed. By default this option is off. As can be seen from previous

examples, this manipulator is not needed in fixed or scientific format, only in

general format.

#include <iostream>

using namespace std;

int main()

{

 float lots = 3.1415926535;

 float little1 = 2.25;

 float little2 = 1.5;

 float whole = 4.00000;

 cout << "Some values with noshowpoint (the default)" << endl << endl;

 cout << "lots: " << lots << endl;

 cout << "little1: " << little1 << endl;

 cout << "little2: " << little2 << endl;

 cout << "whole: " << whole << endl;

 cout << endl << endl;

 cout << "The same values with showpoint" << endl << endl;

 cout << showpoint;

 cout << "lots: " << lots << endl;

10

 cout << "little1: " << little1 << endl;

 cout << "little2: " << little2 << endl;

 cout << "whole: " << whole << endl;

 return 0;

}

produces
Some values with noshowpoint (the default)

lots: 3.14159

little1: 2.25

little2: 1.5

whole: 4

The same values with showpoint

lots: 3.14159

little1: 2.25000

little2: 1.50000

whole: 4.00000

